China manufacturer Hardened Tooth Surface External Cast Iron Spur Gears Gear Shaft hypoid bevel gear

Product Description

My advantages:
1. High quality materials, professional production, high-precision equipment. Customized design and processing;
2. Strong and durable, strong strength, large torque and good comprehensive mechanical properties;
3. High rotation efficiency, stable and smooth transmission, long service life, noise reduction and shock absorption;
4. Focus on gear processing for 20 years.
5. Carburizing and quenching of tooth surface, strong wear resistance, reliable operation and high bearing capacity;
6. The tooth surface can be ground, and the precision is higher after grinding.

 

Application: Motor, Motorcycle, Machinery, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Gear Position: External Gear
Manufacturing Method: Cut Gear
Toothed Portion Shape: Spur Gear
Material: Cast Steel
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

spur gear

Can spur gears be used in automotive applications?

Yes, spur gears can be used in automotive applications. Here’s a detailed explanation:

Spur gears are one of the simplest and most commonly used types of gears. They consist of cylindrical teeth that are parallel to the gear axis and mesh with each other to transmit power and motion. While other gear types like helical gears or bevel gears are often preferred in certain automotive applications, spur gears still find their place in various automotive systems and components.

1. Transmissions:

Spur gears are commonly found in manual transmissions, especially in lower gears. They are used to achieve a direct and efficient power transfer between the engine and the wheels. Spur gears in transmissions are designed to handle high torque loads and provide reliable performance.

2. Differential:

In automotive differentials, which distribute power between the wheels while allowing them to rotate at different speeds, spur gears are often employed. They are used in the differential gear train to transfer torque from the driveshaft to the wheels. The simplicity and robustness of spur gears make them suitable for this application.

3. Starter Motors:

Spur gears are commonly used in starter motors to crank the engine when starting a vehicle. They provide high torque and efficient power transmission to rotate the engine’s crankshaft and initiate the combustion process. Starter motor spur gears are designed to handle the initial load and engage smoothly with the engine’s flywheel.

4. Timing Systems:

In automotive timing systems, where precise synchronization of engine components is crucial, spur gears can be used. They are employed in timing belts or chains to drive the camshafts, ensuring proper valve timing and engine performance. Spur gears in timing systems contribute to accurate and reliable engine operation.

5. Accessories and Auxiliary Components:

Spur gears are also utilized in various automotive accessories and auxiliary components. They can be found in power window mechanisms, windshield wipers, power steering systems, and other mechanisms that require controlled and synchronized motion. Spur gears provide cost-effective and efficient power transmission for these applications.

It’s important to note that while spur gears have their advantages, they also have certain limitations. They can generate more noise and vibration compared to gears with helical or bevel tooth profiles. Additionally, spur gears are not as suitable for high-speed or high-torque applications as other gear types.

Overall, spur gears have a significant presence in automotive applications, particularly in manual transmissions, differentials, starter motors, timing systems, and various auxiliary components. Their simplicity, reliability, and cost-effectiveness make them a viable choice for specific automotive gear applications.

spur gear

What lubrication is required for spur gears?

The lubrication requirements for spur gears are essential to ensure smooth operation, minimize wear, reduce friction, and dissipate heat. Here’s a detailed explanation of the lubrication needed for spur gears:

Spur gears typically require lubricants that possess specific characteristics to provide effective lubrication. These lubricants should have the following properties:

  • Viscosity: The lubricant should have the appropriate viscosity to create a sufficient lubricating film between the gear teeth. The viscosity should be suitable for the operating conditions, including the load, speed, and temperature. Higher loads and speeds generally require higher viscosity lubricants to maintain an adequate lubricating film.
  • Extreme Pressure (EP) Properties: Spur gears may experience high contact pressures and sliding friction, especially during heavy load conditions. Lubricants with EP additives are necessary to provide enhanced protection against wear and prevent metal-to-metal contact between the gear teeth. EP additives form a protective film on the gear surfaces, reducing friction and extending gear life.
  • Anti-Wear (AW) Properties: Lubricants for spur gears should have anti-wear properties to protect the gear teeth from excessive wear and surface damage. AW additives form a protective layer on the gear surfaces, reducing friction and preventing metal-to-metal contact. This helps prolong the gear life and maintain gear system efficiency.
  • Oxidation and Corrosion Resistance: The lubricant should possess good oxidation resistance to withstand high operating temperatures without deteriorating. It should also provide corrosion protection to prevent rust and corrosion on the gear surfaces, especially in environments with moisture or aggressive contaminants.
  • Compatibility: The lubricant should be compatible with the materials used in the gear system, including the gear material, shafts, and bearings. It should not cause any adverse reactions or damage to the gear components. Consult the gear manufacturer’s recommendations for lubricant compatibility.

The specific type and grade of lubricant needed for spur gears depend on the application, operating conditions, and gear material. Common lubricants used for spur gears include mineral oils, synthetic oils, and grease. Synthetic lubricants are often preferred for their superior performance in terms of viscosity stability, oxidation resistance, and temperature extremes.

When applying lubrication to spur gears, ensure that the lubricant is evenly distributed across the gear teeth. Proper lubrication can be achieved through methods such as oil bath lubrication, oil mist lubrication, or oil application directly onto the gear teeth. The lubrication interval and quantity should be based on the gear system’s operating conditions and the lubricant manufacturer’s recommendations.

Regular inspection and maintenance of the gear system are necessary to monitor the lubricant condition, replenish as needed, and ensure the gears remain properly lubricated throughout their service life.

It is important to consult the gear manufacturer’s guidelines and recommendations, as they may provide specific lubrication requirements and considerations for their gear products.

spur gear

What is a spur gear and how does it work?

A spur gear is a type of cylindrical gear with straight teeth that are parallel to the gear axis. It is one of the most common and simplest types of gears used in various mechanical systems. Spur gears work by meshing together to transmit rotational motion and torque between two parallel shafts. Here’s a detailed explanation of spur gears and how they work:

A spur gear consists of two or more gears with cylindrical shapes and an equal number of teeth. These gears are mounted on parallel shafts, and their teeth mesh together to transfer rotational motion from one gear to another. The gear with power input is called the “drive gear” or “driver,” while the gear receiving the power output is called the “driven gear” or “follower.”

The key characteristics and components of spur gears include:

  • Teeth: Spur gears have straight teeth that are cut parallel to the shaft axis. The teeth are evenly spaced around the circumference of the gear. The number of teeth determines the gear ratio and affects the speed and torque transmission between the gears.
  • Pitch Diameter: The pitch diameter is the theoretical diameter of the gear at the point where the teeth mesh. It is determined by the number of teeth and the module or diametral pitch of the gear.
  • Module or Diametral Pitch: The module is a parameter used in metric gear systems, while the diametral pitch is used in imperial gear systems. They define the tooth size and spacing of the gear. The module is the ratio of the pitch diameter to the number of teeth, while the diametral pitch is the number of teeth per inch of pitch diameter.
  • Pressure Angle: The pressure angle is the angle between the line tangent to the tooth profile at the pitch point and a line perpendicular to the gear axis. Common pressure angles for spur gears are 20 degrees and 14.5 degrees.
  • Meshing: Spur gears mesh by engaging their teeth, creating a point or line contact between the contacting surfaces. The teeth transfer rotational motion and torque from the drive gear to the driven gear.
  • Gear Ratio: The gear ratio is determined by the number of teeth on the drive gear and the driven gear. It defines the relationship between the input speed and the output speed. The gear ratio can be calculated by dividing the number of teeth on the driven gear by the number of teeth on the drive gear.
  • Operation: As the drive gear rotates, its teeth come into contact with the teeth of the driven gear. The contact between the teeth transfers rotational motion and torque from the drive gear to the driven gear. The meshing teeth maintain a constant speed ratio, allowing for the transmission of power between the shafts. The direction of rotation can be changed by meshing gears with an odd or even number of teeth.

Spur gears offer several advantages, including simplicity, ease of manufacture, efficiency, and reliability. They are commonly used in a wide range of applications, including machinery, automotive systems, appliances, power tools, and more.

In conclusion, spur gears are cylindrical gears with straight teeth that mesh together to transfer rotational motion and torque between parallel shafts. Their simple and efficient design makes them a popular choice for various mechanical systems.

China manufacturer Hardened Tooth Surface External Cast Iron Spur Gears Gear Shaft hypoid bevel gearChina manufacturer Hardened Tooth Surface External Cast Iron Spur Gears Gear Shaft hypoid bevel gear
editor by CX 2023-10-26

Tags: