China Good quality Precision Machining Engineering Plastics Wear-Resistant Nylon Upe Plastic Spur Gear bevel gear set

Product Description

Machined internal CHINAMFG custom high temperature resistant helical gear sprockets

Product Paramenter
Advantages of plastic gears include light weight, no rust, no noise, injection molding enables low-cost and high-volume production, and can run without lubrication by mating with metal gears. On the other hand, it has lower strength than metals, tends to generate heat, and has large dimensional changes such as backlash. The degree of dimensional change of plastic gears depends on the ability to resist temperature changes, moisture absorption rate and chemical resistance, and the use of each field is different. We can also customize metal gears according to your drawings or samples.

ingenious designa good product is enough for a lifetimestrong bearing quality productshigh-quality craftsmanship quality products smooth operation qualityproducts thick material quality products

Specialty plastic gears are specialized components used in various industrial applications to withstand high temperatures and harsh operating conditions.
These gears are designed to ensure smooth and efficient power transmission with reduced noise and vibration levels. Provides precise and accurate dimensions for internal plastic parts, ensuring a perfect fit and optimum performance.
Ideal for applications where heat is generated such as industrial ovens, furnaces and other high temperature equipment. They are also resistant to chemicals, corrosion and abrasion, making them suitable for use in harsh environments.
Can improve the performance and efficiency of industrial equipment.

Products

 Gear

Module

M0.5-M10

Precision grade

DIN6, DIN7, DIN8, DIN10

Pressure angle

20 degree

Material

C45 steel, Stainless steel 304, Plastic, Brass, 20CrMo,40Cr and so on

Heat treatment

Hardening and Tempering, High Frequency Quenching,Carburizing etc

Surface treatment

 Blacking, Polishing, Anodization, Chrome Plating, Zinc Plating, Nickel Plating

Application

Precision cutting machines. Lathes. Milling machines. Grinders. Automated mechanical systems.Automated warehousing systems.

Machining process

Hobbing, Milling, Drilling, Shaving, Grinding

Descriptions:
(1) According to the different strength and performance, we choose the steel with strong compression;
(2) Using Germany professional software and our professional engineers to design products with more reasonable size and better performance;
(3) We can customize our products according to the needs of our customers,Therefore, the optimal performance of the gear can be exerted under different working conditions;
(4) Quality assurance in every step to ensure product quality is controllable.

Prduct Display
We manufacture custom high quality gears for many industries, from small to large, in a wide range of materials and sizes. Available materials for bevel gears include; Steel, Alloy Steel, Brass, Bronze, Copper, Aluminum, Aluminum Bronze, Cast and Ductile Iron, Stainless Steel, Phenolic, Nylon/PEEK/POM/UPE/ABS and many more. Our custom gears come in a variety of diameter pitches and pressure angles, and are available in standard and metric sizes.
How To Customize
NO.1 Mailing samples
Our engineers can measure the specifications and test the materials to make an identical product based on the sample you provide.
NO.2 Provide drawings
We support CAD drawings, PDF files, STP, STEP,X-T and other 3D formats for customization and confidential processing of products according to your needs.
NO .3 Only photos
If you only have photos and no detailed drawing samples we can also process and make products for you if you
provide us with the detailed dimensions of your products.

 

ApplicationWe have a professional engineer team to design custom parts for your needs , we also have ready-made standard moulds that can save your cost and time . We offer ODM/OEM service, Production Design and Mould Design base on your requirement . Providing the sample before mass production , ensure all is OK for you .

If you have any problems or want to get the quoted price of any plastics or machined components, please feel free to contact us. Our engineers will reply to you as soon as possible.

A wide range of injection mold options
Our products cover auto parts mold, electrical appliances injection mold, medical machinery and so on. We provide products and services to more than 60 countries and regions in the world, including Europe, the United States and Southeast Asia.

Our Factory
Our factory has 100 sets of precision processing equipment, welcome to visit our factory!

The factory covers an area of 10,000 square CHINAMFG Production equipment has the original American imported Haas CNC machining center, wire-electrode cutting, electrical discharge machine,Perforating machine, injection molding machine, CNC milling machine,CNC hobbing machine, CNC lathe, CNC milling machine, CNC lathe, CNC milling machine, grinding machine and other machinery and equipment.
One-stop Service
OEM, ODM, Customization service,Reasonable and competitive price,Design for Manufacturability (DFM) analysis with every quote,Short Delivery Time.
Reliable mold expert 15+ years’ experience, Cooperated with many world famous brands for many years, Specialize in large and complex injection mold making, One-stop service from design to production.

Certification
Companies strictly enforce the ISO9001(2008)international quality certification system, the product quality conforms to the eu RoHS standard.

Professional team

Our company is developing in the mode of quality for survival, brand for development and customer’s demand, welcome new and old customers to visit our factory for guidance.

Client Witness

Our Exhibition & CCTV Interview
Buying Instructions
Q1. Can samples be produced?
A1. Yes
Q2. What is the accuracy of the products processed by the drawings?
A2. Different equipment has different accuracy, generally between 0.05-0.1
Q3. What craftsmanship do you have for processing accessories?
A3. According to different products, different processes are used, such as machining, extrusion, injection molding, etc.
Q4. What are your processing equipment?
A4. CNC machining center, CNC lathe, milling machine, engraving machine, injection molding machine, extruder, molding
machine
Q5. Can you help assembling the product after it is made?
A5. It’s okay
Q6. What certifications or qualifications does your company have?
A6. Our company’s certificates are: ISO, ROHS, product patent certificates, etc.
Q7. Can injection products be surface treated? What are the surface treatments?
A7. It is ok. Surface treatment: spray paint, silk screen, electroplating, etc.
Prduct DisplaPrduct Display

 

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Hardness: Soft Tooth Surface
Gear Position: Internal Gear
Manufacturing Method: Cast Gear
Toothed Portion Shape: Spur Gear
Material: Nylon
Customization:
Available

|

Customized Request

spur gear

How do you address noise and vibration issues in a spur gear system?

Noise and vibration issues in a spur gear system can significantly impact its performance, efficiency, and overall user experience. Here’s a detailed explanation of how to address noise and vibration issues in a spur gear system:

  • Gear Design: Optimize the gear design to minimize noise and vibration. Consider factors such as tooth profile, gear module or pitch, and the number of teeth to ensure smooth and quiet gear operation. Proper gear design helps reduce gear meshing impacts and tooth-to-tooth variations, which are common sources of noise and vibration.
  • Accurate Gear Alignment: Ensure precise gear alignment to minimize misalignment-induced noise and vibration. Misalignment between the gears can cause uneven loading, increased backlash, and gear meshing irregularities, leading to noise and vibration. Proper alignment techniques, such as using alignment tools or measuring devices, should be employed during gear installation and maintenance.
  • Surface Finish and Tooth Quality: Ensure proper surface finish and high-quality tooth profiles on the gears. Rough surfaces or manufacturing defects can contribute to noise and vibration. Gears with accurate tooth profiles and smooth finishes experience better meshing and reduced friction, resulting in lower noise and vibration levels.
  • Lubrication: Proper lubrication is crucial for reducing friction, wear, and noise generation in spur gear systems. Use the recommended lubricant type and ensure sufficient lubricant film thickness between gear teeth. Regular lubricant analysis and replacement are important to maintain optimal lubrication performance and minimize noise and vibration issues.
  • Load Distribution: Evaluate the load distribution within the gear system to minimize localized loading and potential noise sources. Proper gear design, tooth profile optimization, and gear arrangement can help distribute the load evenly, reducing noise and vibration caused by uneven loading conditions.
  • Resonance Analysis and Damping: Conduct resonance analysis to identify and address potential resonant frequencies within the gear system. Resonance can amplify noise and vibration. Techniques such as adding damping materials, using vibration isolators, or adjusting gear configurations can help mitigate resonance-related noise and vibration issues.
  • Noise and Vibration Testing: Perform noise and vibration testing during the development and maintenance stages of the gear system. This involves using specialized equipment to measure and analyze noise and vibration levels. Testing helps identify specific sources of noise and vibration, allowing for targeted solutions and improvements.
  • Isolation and Absorption: Implement isolation and absorption techniques to minimize noise and vibration transmission to surrounding structures or components. This can include using vibration isolators, resilient mounts, or incorporating vibration-absorbing materials to reduce the propagation of noise and vibration beyond the gear system.
  • Regular Maintenance and Inspection: Implement a proactive maintenance program to monitor gear performance and identify potential noise and vibration issues. Regular inspections, including gear tooth wear analysis, lubricant checks, and alignment verification, allow for early detection and rectification of any problems that may contribute to noise and vibration.

By considering these approaches and implementing appropriate measures, it is possible to address noise and vibration issues in a spur gear system, resulting in quieter and smoother gear operation.

It’s important to note that the specific techniques and solutions for addressing noise and vibration may vary depending on the gear system’s application, design, and operating conditions. Consulting with gear manufacturers, industry experts, or vibration specialists can provide further guidance in addressing noise and vibration issues specific to a spur gear system.

spur gear

How do you prevent backlash and gear play in a spur gear mechanism?

Preventing backlash and gear play is crucial for maintaining the accuracy, efficiency, and smooth operation of a spur gear mechanism. Here’s a detailed explanation of how to prevent backlash and gear play in a spur gear mechanism:

  • Precision Gear Design: Ensure that the spur gears used in the mechanism are designed with precision and manufactured to tight tolerances. Accurate tooth profiles, proper tooth spacing, and correct gear meshing are essential to minimize backlash and gear play.
  • Adequate Gear Tooth Contact: Optimize the gear meshing by ensuring sufficient tooth contact between the mating gears. This can be achieved by adjusting the center distance between the gears, selecting appropriate gear module or pitch, and ensuring proper gear alignment.
  • Proper Gear Engagement Sequence: In multi-gear systems, ensure that the gears engage in a proper sequence to minimize backlash. This can be achieved by using idler gears or arranging the gears in a way that ensures sequential engagement, reducing the overall amount of play in the system.
  • Backlash Compensation: Implement backlash compensation techniques such as preloading or using anti-backlash devices. Preloading involves applying a slight tension or compression force on the gears to minimize the free movement between the gear teeth. Anti-backlash devices, such as split gears or spring-loaded mechanisms, can also be used to reduce or eliminate backlash.
  • Accurate Gear Alignment: Proper alignment of the gears is critical to minimize gear play. Ensure that the gears are aligned concentrically and parallel to their respective shafts. Misalignment can result in increased backlash and gear play.
  • High-Quality Bearings: Use high-quality bearings that provide precise support and minimize axial and radial play. Proper bearing selection and installation can significantly reduce gear play and improve the overall performance of the gear mechanism.
  • Appropriate Lubrication: Ensure that the gears are properly lubricated with the correct type and amount of lubricant. Adequate lubrication reduces friction and wear, helping to maintain gear meshing accuracy and minimize backlash.
  • Maintain Proper Gear Clearances: Check and maintain the appropriate clearances between the gears and other components in the gear mechanism. Excessive clearances can lead to increased gear play and backlash. Regular inspections and adjustments are necessary to ensure optimal clearances.
  • Regular Maintenance: Implement a regular maintenance schedule to inspect, clean, and lubricate the gear mechanism. This helps identify and rectify any issues that may contribute to backlash or gear play, ensuring the gear system operates at its best performance.

By following these practices, it is possible to minimize backlash and gear play in a spur gear mechanism, resulting in improved precision, efficiency, and reliability of the system.

It’s important to note that the specific techniques and approaches to prevent backlash and gear play may vary depending on the application, gear type, and design requirements. Consulting with gear manufacturers or specialists can provide further guidance on addressing backlash and gear play in specific gear mechanisms.

spur gear

How do you choose the right size spur gear for your application?

Choosing the right size spur gear for your application requires careful consideration of various factors. Here’s a detailed explanation of the steps involved in selecting the appropriate size spur gear:

  1. Determine the Required Torque: Start by determining the torque requirements of your application. Calculate or estimate the maximum torque that the gear will need to transmit. Consider factors such as the power input, speed, and load conditions to determine the required torque.
  2. Identify the Speed Requirements: Determine the desired rotational speed or RPM (revolutions per minute) for your application. This will help in selecting a gear with the appropriate pitch diameter and tooth configuration to achieve the desired speed.
  3. Consider the Load Conditions: Evaluate the expected load conditions, including the magnitude and direction of the load. Determine if the load is constant or variable, and if it involves shock loads or cyclic loading. This will impact the gear’s durability and load-carrying capacity.
  4. Calculate the Pitch Diameter: Based on the torque and speed requirements, calculate the pitch diameter of the spur gear. The pitch diameter is determined by the formula: Pitch Diameter = (2 x Torque) / (Pressure Angle x Allowable Tooth Shear Stress).
  5. Select the Module Size: Choose an appropriate module size based on the gear size and application requirements. The module size determines the tooth size and spacing. Smaller module sizes are used for fine tooth profiles and higher precision, while larger module sizes are suitable for heavier loads and higher torque applications.
  6. Determine the Number of Teeth: Based on the pitch diameter and module size, calculate the number of teeth required for the gear. Ensure that the gear has an adequate number of teeth for smooth operation, load distribution, and sufficient contact ratio.
  7. Consider Space Constraints: Evaluate the available space and mounting requirements in your application. Ensure that the selected gear size can fit within the available space and can be properly mounted on the shaft or gearbox.
  8. Choose the Material: Consider the operating conditions, such as temperature, humidity, and presence of corrosive substances, to select the appropriate material for the spur gear. Common materials include steel, cast iron, brass, and plastic. Choose a material that offers the necessary strength, wear resistance, and durability for your specific application.
  9. Consider Additional Design Features: Depending on your application requirements, you may need to consider additional design features such as profile shift, hub configuration, and surface treatments. Profile shift can optimize gear performance, while specific hub configurations and surface treatments may be necessary for proper mounting and enhanced durability.

It’s important to note that gear selection is a complex process, and it may require consultation with gear manufacturers or experts in the field. They can provide guidance based on their expertise and assist in selecting the most suitable spur gear for your specific application.

By thoroughly considering factors such as torque requirements, speed, load conditions, pitch diameter, module size, number of teeth, space constraints, material selection, and additional design features, you can choose the right size spur gear that meets the demands of your application in terms of performance, durability, and efficiency.

China Good quality Precision Machining Engineering Plastics Wear-Resistant Nylon Upe Plastic Spur Gear bevel gear setChina Good quality Precision Machining Engineering Plastics Wear-Resistant Nylon Upe Plastic Spur Gear bevel gear set
editor by CX 2023-09-25

Tags: